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Abstract: The report outlines an approach to evaluating the effectiveness of a light aircraft pilot in flight
simulator during ILS landing procedure. In the course of flight task fulfilment, data from eye tracking
measurements is being gathered. The data are further utilized for machine learning of several dichotomous
classification models. The models' accuracy is assessed to facilitate the automatic ranking of pilots while
executing the aforementioned task in particular.
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Pe3rome: B Odoknada e npedcmaseH mMemold 3a OueHka pabomama Ha nu/iom Ha J/leK camosiem 8
ronemeH cumysiamop npu u3nb/IHEHUe Ha 3axo0 3a kauaHe no ILS. 1o epeme Ha U3Nb/HEHUE Ha nofemHama
3adaya ce cbbupa cmamucmu4ecku Mamepuas om 0aHHU om okynoepacpusi. CbbpaHume daHHU ca U3rosn3gaHu
3a MawuHHO 0bydYeHUe Ha HSK/I0NKO OuXomoMHU Moldesnia 3a Kriacugukayus. ToyHocmma Ha modenume e
oueHeHa, 3a 0a ce u3non3eam 3a MaWUHHO KriacupaHe Ha nuiomu rnpu UsmbjiHEHUE Ha nocoYyeHama 3adaya.

Introduction

In air transport and general aviation, data mining is used to enhance flight safety and assess
pilot’'s performance in numerous ways. Airlines gather extensive amounts of flight information from
aircraft sensors and cockpit audio recordings. Machine learning algorithms examine this data to
identify patterns pointing to pilot behaviors, including compliance with procedures, reaction times, and
management of unusual situations, for example repeated deviations from standard operating
procedures to name but a few. What is more, machine learning models are capable of detecting
typical pilot behaviors or system interactions that may suggest fatigue, stress, or insufficient training.
These irregularities are subsequently examined to enhance pilot training programs or operational
procedures. Data mining facilitates the comparison of pilots’ performance to that of peers or
predetermined benchmarks. This can enable individualized instruction by highlighting areas where a
pilot excels or needs more training. In addition, data mining helps to analyze contributing factors, such
as pilot reactions, in mishaps or near-misses. Better training programs centered on particular abilities
or decision-making procedures may result from this realization. Last but not the least, airliners, using
time-stamped records, employ predictive models to foresee possible safety risks, thus allowing for
proactive responses before problems worsen. In general, these data-oriented strategies offer a more
unbiased, thorough perspective on pilot performance, enhancing safety and efficiency in flight
operations.

Current research involves a simple investigation of pilots’ performance within a flight simulator
environment utilizing eye tracker data and data mining algorithms, see for example study case [1].
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Materials and methods

The proposed research employs decision tree, logistic regression, random forest, and k-
nearest neighbor classification algorithms implemented in Orange, [2] data mining toolkit, in order to
assess pilot's performance, Fig. 1.
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Fig. 1. Block diagram for validating models and making predictions in Orange IDE

The logistic regression is widely used classification method in machine learning. It’s
especially helpful for predicting binary results, such as yes or no, on or off, true or false, heads or tails,
pass or fail, etc. The algorithm works by estimating the likelihood that a specific input belongs to a
certain category. It achieves this by applying a logistic (or sigmoid) function to a weighted sum of the
input features. The sigmoid function normalizes the output within [0; 1] interval which is why the output
is dichotomous, i.e. it has only two possible outcomes.

The random forest classifier is a well-known machine learning algorithm employed in data
mining for classification purposes. Throughout the training process, numerous decision trees are
constructed, with each being trained on a random selection of data and features. Predictions from the
trees are further combined to make a final decision. This randomness enhances precision and
minimizes overfitting. The classifier is known for being robust, versatile, and effective with extensive
datasets.

The support vector machine classifier is a supervised machine learning algorithm primarily
used for binary classification tasks. It finds the optimal hyperplane that best separates two classes in
the feature space, such as predicting whether the applicant will pass or fail. It is effective particularly
when dealing with high-dimensional spaces and when the classes can be separated with categories
that may not necessarily be linearly separable. This classifier is a preferred option in many
applications because to its resilience and capacity to manage outliers and non-linear correlations.

The confusion matrix is a table that helps assess how well a classification algorithm is
performing. It shows the number of correct and incorrect predictions, organized by each class. For
instance, in case of a binary classification problem, the confusion matrix is a 2x2 table with following
customary fields:

Table 1. Confusion matrix arrangement for a binary classification problem

Actually positive

Actually negative

Predicted positive

True positives, TP

False positives, FP

Predicted negative

False negatives, FN

True negatives, TN

True positives, TP: correctly predicted positive cases
True negatives, TN: correctly predicted negative cases
False positives, FP: incorrectly predicted positive cases (actually negative)
False negatives, FN: incorrectly predicted negative cases (actually positive)
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From confusion matrix elements, following performance metrics might be evaluated:

Accuracy: (TP + TN) /(TP + TN + FP + FN)

Precision: TP / (TP + FP)

Recall (True Positive Rate, Sensitivity): TP / (TP + FN)
Specificity (True Negative Rate): TN/ (TN + FP)

F1 Score: 2 * (Precision * Recall) / (Precision + Recall)

The correctly classified instances lie on the matrix main diagonal (colored in green).

For a multi-class classification, the confusion matrix expands to an NxN table, where N is the
number of classes, showing the counts of actual vs. predicted class combinations. The confusion
matrix provides detailed insight into how well the classifier is performing, especially in imbalanced
datasets, where accuracy alone might be misleading.

The ten-fold cross-validation is a common method used in data mining to evaluate how well
a predictive model works and whether it is applicable or not. It gives an estimate of how the model will
perform on new data by dividing the dataset into 10 subsets, called folds. The model is trained on nine
of these folds and tested on the remaining one. This process is repeated 10 times, each time with a
different fold used for testing. The overall performance is then summarized by averaging metrics like
accuracy, precision, recall, and F1-score across all 10 runs.
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Fig. 2. Flight plan including standard terminal arrival route RWY 09 for LBWN in Little NavMap

The flight task scenario is executed in X-Plane v.12 flight simulator, [3]. A flight plan, Fig. 2
was created in advance in Little NavMap, [4] and uploaded to GNS 530/430 GPS receivers which can
be found on aircraft Cessna 172 SkyHawk, [5] dashboard. The examined candidate is told to follow a
standard terminal arrival route to Varna airport, LBWN and land using ILS-Y approach at RWY 09. The
aircraft flies along the entire flight plan automatically. The candidate is exclusively focused on
adjusting throttle and mixture controls to keep EGT (exhaust gas temperature) and engine RPM
(revolutions per minute) within acceptable limits. Not long before touchdown, the candidate
disengages the autopilot by pressing a dedicated switch on the flight yoke and lands manually. It takes
the applicant about eight minutes to complete the task.

During flight task fulfilment, a desktop-based eye tracker stores gaze fixations nhumber and
duration, Fig. 3 within zones of interest defined beforehand. Saccadic pupil movement is not taken into
account. The eye tracker used is GazePoint GP3 HD, Fig. 3. Data log rate is 150 Hz. The GazePoint
Analysis UX raw data recording and processing software computes total Viewed Time in seconds and
per cent at each zone of interest. Upon flight plan completion, the results are directed to the Orange
data mining tool for evaluating the applicant’s performance.

Alongside fixation distribution within the screen, a time plot is created to portray and analyze
gaze temporal dynamics across four zones of interest. The Circle Diagram created in this manner
closely resembles the static “time plot of the gaze data” suggested by Raiha et al., [6]. In the diagram,
fixation ordering pattern (if any) is of primary interest.
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Fig. 3. GazePoint GP3 HD desktop-based eye tracker, pulse rate sensor, and self-engagement report tool

The flight simulator display has been pre-divided into four areas of interest as shown in Fig. 4:

e Primary flight instruments including air speed indicator, attitude indicator, barometric altimeter,
turn coordinator, heading indicator, variometer, propeller RPM and Hobbs meter.

e Secondary flight instruments including VOR1 / ILS gauge, VOR2 gauge, automatic direction
finder (ADF) gauge, audio switching panel, GNS 530/430 GPS receivers, transponder,
autopilot. The ILS receiver is set to CAT | IWN frequency. The ADF receiver, while not
assigned to a specific zone of interest, has its frequency set to Devnya DWN NDB.

e Tertiary flight instruments including chronometer, fuel gauge, exhaust gas temperature and
fuel flow, oil temperature and pressure, vacuum pressure and battery ammeter.

e The environment visible through windshield.

The pilot’s head spontaneous motion lies within acceptable limits which is why it can be
disregarded.

Fig. 4. Cessna 172 cockpit overlaid with zones of interest and dynamic heatmap in X-Plane 12

During training phase, an experienced pilot fulfills the flight assignment and achieves an
outstanding score. The pilot is considered etalon or prototypic. Data for the machine model training is
generated by adding white Gaussian noise to the original dataset by function awgn in GNU Octave,
[7]. The signal-to-noise ratio varies based on the required pilot's skills. A good pilot is thought to stray
less from the original dataset, whereas a poor one diverges significantly. In this way, data is generated
for applicants with different level of experience. Whenever an applicant decides to take the exam, the
machine model makes a prediction and reports whether the applicant passed or failed the test.
Miscalculations are highly unlikely. It depends on how well the classifier is trained.
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Results

In Fig. 5, confusion matrices pertained to three used classifiers are shown.
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Fig. 5. Confusion matrices related to used classifiers

Upon double clicking on Test and Score widget, following results are revealed.

i Score - — O *
| (® Cross validation Evaluation results for target | (None, show average over classes) ~
9 g9
Mmibrofinlis [0 Model AUC CA  F1  Prec Recall MCC -
Stratified Logistic Regression 0,980 0.800 0.792 0.857 0.800 0.655
Cross validation by feature Random Forest 0.9%0 0.500 0.900 0.500 0.900 0.200
SVM 1.000 1,000 1.000 1.000 1.000 1.000
(O Random sampling
Repeat train/test: |10
Training set size: | B6% ~|
Stratified Compare models by: | Area under ROC curve ~ [ Negligible diff.: 0.1
() Leave one out Legistic Regression Random Forest SVM
(O Test on train data Logistic Regression 0.500 0.500
® ol Random Forest 0.500 0.500
SWVM 0.500 0.500

Table shows probabilities that the score for the model in the row is higher than that of the model in the column. Small numbers show
the probability that the difference is negligible.
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Fig. 6. Test and Score widget contents

In Fig. 7, the applicant’s results are displayed.
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Fig. 7. The applicant’s results
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In Fig. 8, a circle diagram is shown depicting temporal dynamics of fixations. In the right-hand
side, the adopted formalism is briefly explained. The ordinate represents four zones of interest whilst
the abscissa indicates time, s.

Zoomed region @ Fixation onset ——
N AN o yd N\
o haie Fonere)—lgpone
- ) . Fixation length
2 @era P =y Gm IO I 3
sia@os @ A 0.58276 s
10— @474 08— N /
N s o " Fixation end
0 {5&75;7‘::?599\52572/‘ | ‘1‘2}){‘29"/ X &:maoz ‘&:ﬂ)ﬂfmsfﬁ 23756 b2hss
— — AN _7_/,/ o 26—
|

Fig. 8. A fragment of circle diagram

Discussion

According to Fig. 5 (confusion matrices) the Logistic Regression classifier exhibits the poorest
performance in the present study compared to the other classifiers. On the other hand, all predictions
made by Support Vector Machine are correct. Because of little to no experience, the applicant is
expected to fail the test and this is what really occurs according to Random Forest and Support Vector
Machine classifiers Fig. 7.

Accuracy metric indicates the number of correct predictions out of all made. Precision metric
refers to the count of true positive instances among all those identified as positive. Recall metric
provides insight into whether the classification model finds all instances of the positive class. When
precision increases, recall diminishes, and the opposite holds true as well. F1-score is the harmonic
mean of both. This indicator reaches its highest value when the precision equals the recall. In this
regard, the Support vector Machine performs best according to metrics shown in Fig. 6.

The optimal machine learning algorithm for binary classification relies on several factors
including the dataset nature and size, interpretability needs, and available computational resources.
Choosing the best algorithm for evaluating applicants involves:

e Experimenting with multiple models via cross-validation;
e Considering an interpretability versus accuracy trade-off;
e Tuning hyperparameters to optimize performance.

Overall, a trade-off between accuracy and robustness for binary classification tasks is
commonly sought.
In current research, GNU Octave [7] is used to process raw data and draw circle diagram.
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